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Abstract- This paper presents the theoretical treatment of a thermoelastic problem of a hollow elliptical cylinder due to par-

tially distributed heat supply on the outer curved surface. Integral transform techniques have been utilized to obtain the so-

lution having the influence of heating and cooling conditions for the problem in the form of a Mathieu series.  
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1 INTRODUCTION                                                                     

This paper presents the theoretical treatment of a thermoelastic 

problem of a hollow elliptical cylinder due to partially distributed 

heat supply on the outer curved surface.  

2. STATEMENT OF THE PROBLEM 

 

We consider elliptical cylinder of inside radius a, outside radius 

b (where a < b) and thickness  . The geometry of the cylinder 

indicates that an elliptic coordinate system ),,( z  is the most 

appropriate choices of reference frame, which are related to the 

rectangular  coordinate system ),,( zyx  by the relation  

cosh cos , sinh sin ,x c y c z z            

                                                                                                        (1) 
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The curves  constant represent a family of confocal hyperbolas 

while the curves  constant represent a family of confocal ellip-

ses. The length 2c is the distance between their common foci (refer 

to Figure 1). Both sets of curves intersect each other orthogonally at 

every point in space. The parameter   varies from 0 where it de-

fines the interfocal line, to 0 , the coordinate   is an angular co-

ordinate taking the range )2,0[  , and ),0( z .  It is noted 

that c is denoted as 2/122 )(2 bac   and )/(tanh 1
0 ab  in 

terms of the semi major axial-length a and the semi minor axial-

length b. The heat conduction differential equation is given as 
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where 

2/)2cos(cosh22   ch                                                      (3)                                                                        

Introducing the following dimensionless parameters  
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 Heating Process: 

The equation (2) can be written in the dimensionless form as: 
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where 

2/)2cos2(cosh2
1  h                                                                 (6)                                                                              

and compiling various dimensionless boundary conditions are de-

fined to determine the influence of the thermal boundary condi-

tions on the thermal stresses as: 

),(),1,0,( 1 zRTM i   , for all hzh    

                                                                                                                 (7) 

),(),1,0,( 20 zRTM   , for all hzh   

                                                                                                                 (8) 

where k1 and k2 are the radiation constants on the two annular fin 

surfaces 

),(),1,0,( 1 ZhTMz   ,  for all oi  
 

                                                                                                                (9) 

),()/(),1,0,( 20  ZQhTMz  ,  for all oi    

                                                                                                               (10) 

Cooling Process: 

On the other hand for the cooling process the temperature distribution 

),,( zT   satisfies the equation  
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and the various dimensionless boundary conditions are  

),0,1,()0,0,1,( 0tMM     ,  for all  R 1 , L 0  

                                                                                                                      (12) 

0)1,,1,( 1  kM  ,  0),,1,( 2  RkM  , for all  L 0  , 0   

                                                                                                                       (13) 

0)0,1,0,( M ,  0),1,0,(  LM   ,  for all  R1  , 0   

                                                                                                                       (14) 

Thus, the equations (1) to (14) constitute the mathematical for-

mulation for heating and  cooling problems under considera-

tion. 

Thermal Stresses: 

The dimensionless radial and tangential stresses are given as [3] 
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3.  Solution of the problem 

Determination of the heat conduction equation: 

Applying integral transformation defined in [1] to the equations 

(5), (7), (8) over the variable z  with responds to the boundary 

condition (9-10) one obtains  
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),(),1,0,( 1 zRTM i                                                                     (19)                                                                            

),(),1,0,( 20 zRTM                                                                   (20)                                                                              

Where T  denotes the transformed function of T , na  are the 

eigenvalues of the transcendental equations 

  )sin()cos()sin()cos( 2211 ahaahahaha                         

   



International Journal of Scientific & Engineering Research Volume 3, Issue 10, October -2012                                                                                  3 

ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

   )sin()cos()sin()cos( 1122 ahaahahaha     

                                                                                                           (21)         

11 k , 11  , 22 k , 12   responds to the boundaries con-

ditions of type (12.2.8) as 

0),,,( 11 hTM z  , 0),,,( 22  hTM z                                   (22)                                                        

and 

dzzPtzftnf
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Here the kernel is given by the orthogonal functions in the in-

terval hzh   as 

)sin()cos()( zaWzaQzP nnnnn                                                  (24)                                                                 

where 

)sin()()cos()( 2121 hahaaQ nnnn    

)sin()()cos()( 1221 haahaW nnnn    

 4. CONCLUSION 
In this paper presents the theoretical treatment of a thermoelas-

tic problem of a hollow elliptical cylinder due to partially dis-

tributed heat supply on the outer curved surface.  
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